The class of convolution operators on the Marcinkiewicz spaces
نویسنده
چکیده
tion commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit conte-nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques
منابع مشابه
Boundedness of multilinear operators on Triebel-Lizorkin spaces
The purpose of this paper is to study the boundedness in the context of Triebel-Lizorkin spaces for some multilinear operators related to certain convolution operators. The operators include Littlewood-Paley operator, Marcinkiewicz integral, and Bochner-Riesz operator. 1. Introduction. Let T be a Calderon-Zygmund operator. A well-known result of Coif-man et al. [6] states that the commutator [b...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملRough Marcinkiewicz Integrals On Product Spaces
In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملContinuity of Multilinear Operators on Triebel-lizorkin Spaces
Let T be the Calderón-Zygmund singular integral operator, a well-known result of Coifman et al. (see [6]) states that the commutator [b,T]( f ) = T(b f )− bT( f ) (where b ∈ BMO) is bounded on Lp(Rn) (1 < p <∞); Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator; in [8, 9], these results on the TriebelLizorkin spaces and the case b ∈ Lipβ (where Li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003